

Exposures Specialty Section Webinar

Monday May 3, 2021
12:00pm-1:00pm

BD2K analytics reveals the Zika virus epidemic as only one of multiple factors contributing to year-over-year 28-fold increase in microcephaly incidence

Darryl B. Hood, Ph.D.,
Associate Professor
Division of Environmental
Health Sciences
College of Public Health

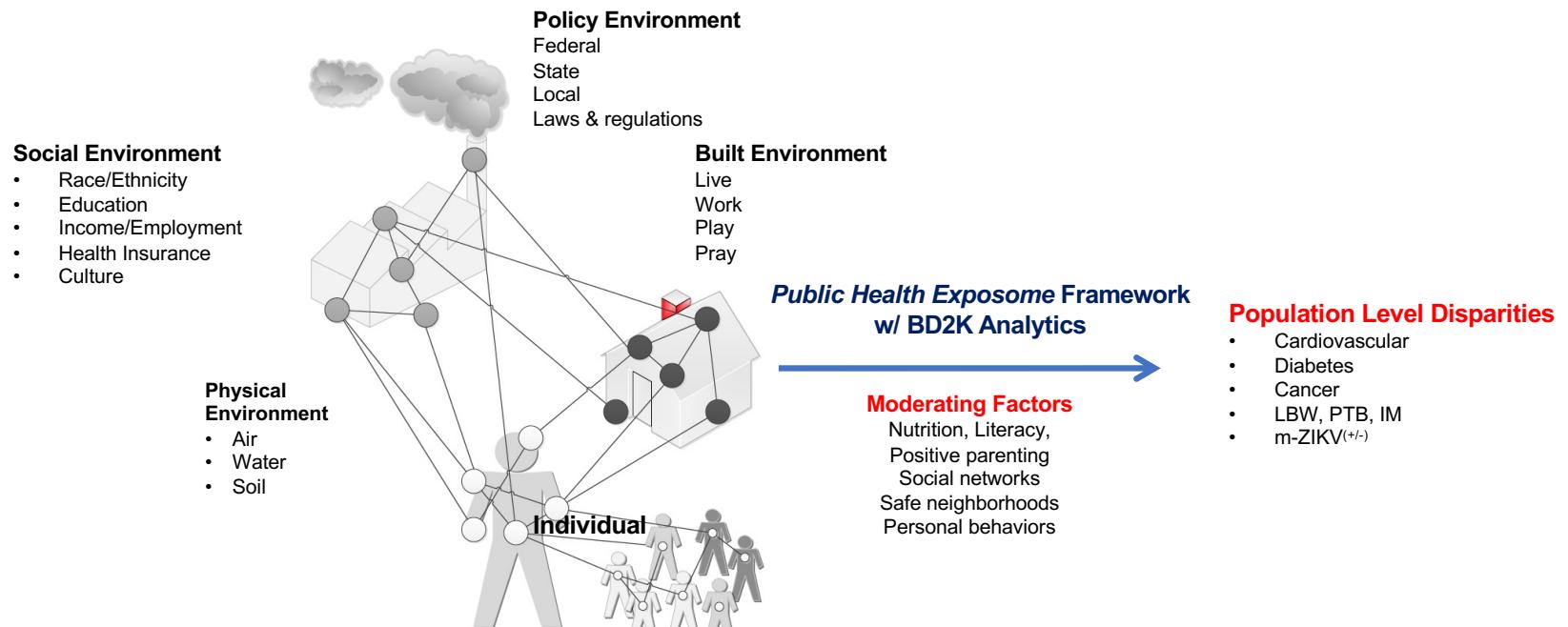
Department of Neuroscience
College of Medicine

Conflict of Interest Statement

The author declares no conflict of interest

Introduction: *Place! (zip code → census tract → census block)*

US EPA STAR Collaboration


Public Health Exposome framework and BD2K analytics

Exemplar: Brazil and Zika

- Methodology
- Results
- Conclusions
- Discussion

Place matters with regard to health care disparities and disparate health outcomes

Exposure to Chemical & Non-Chemical Stressors

GLOBAL SIGNIFICANCE, LOCAL IMPACT

US EPA STAR Investigative Team

Paul

Darryl

Pat

Wansoo

M. Al-Hamdan

Michael

Maureen

Robert

GLOBAL SIGNIFICANCE, LOCAL IMPACT

US EPA STAR Investigative Team

Ramesh

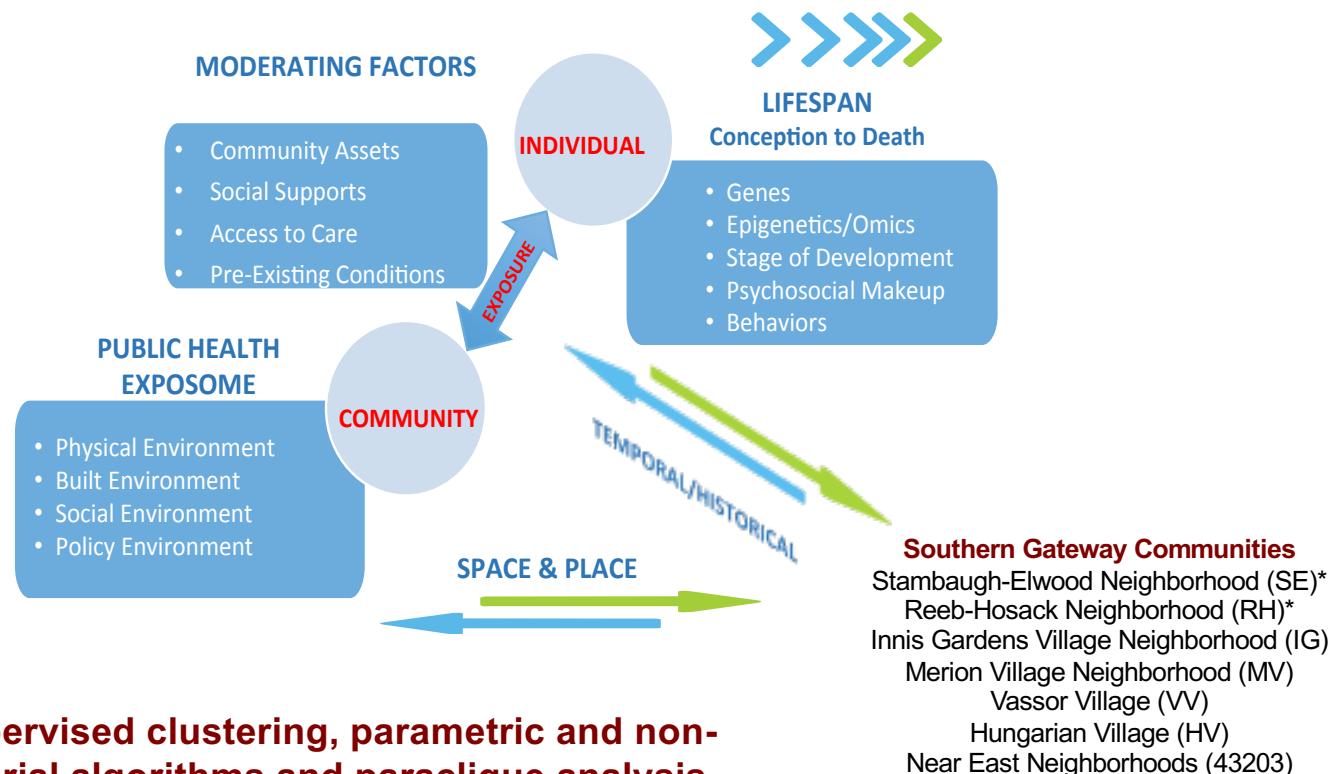
Cynthia

M. Tabatabai

Reichard

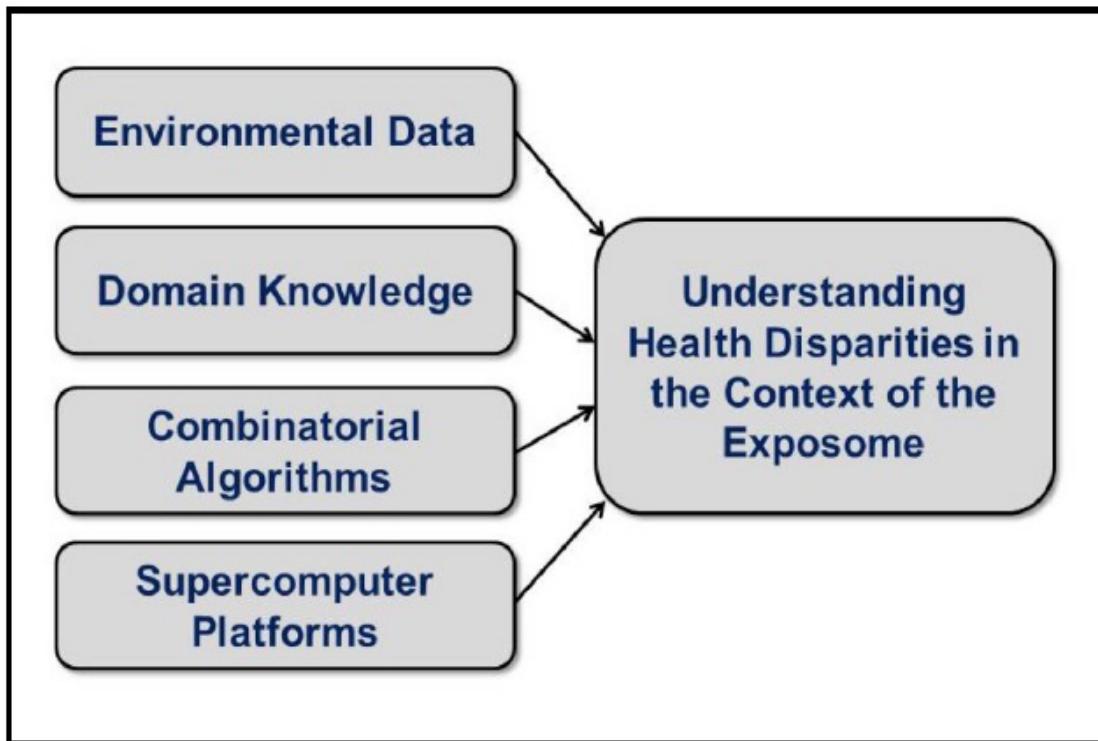
Gary

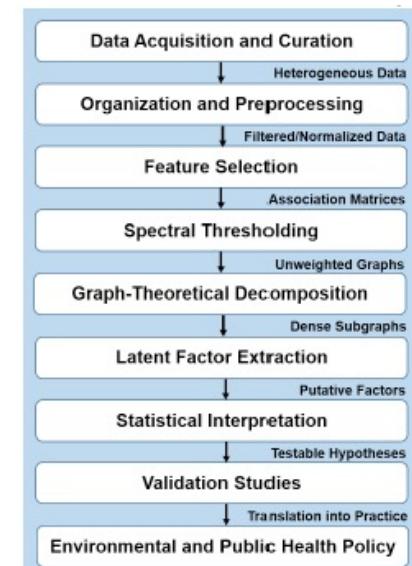
Dave


C. Phillips

C. Mouton

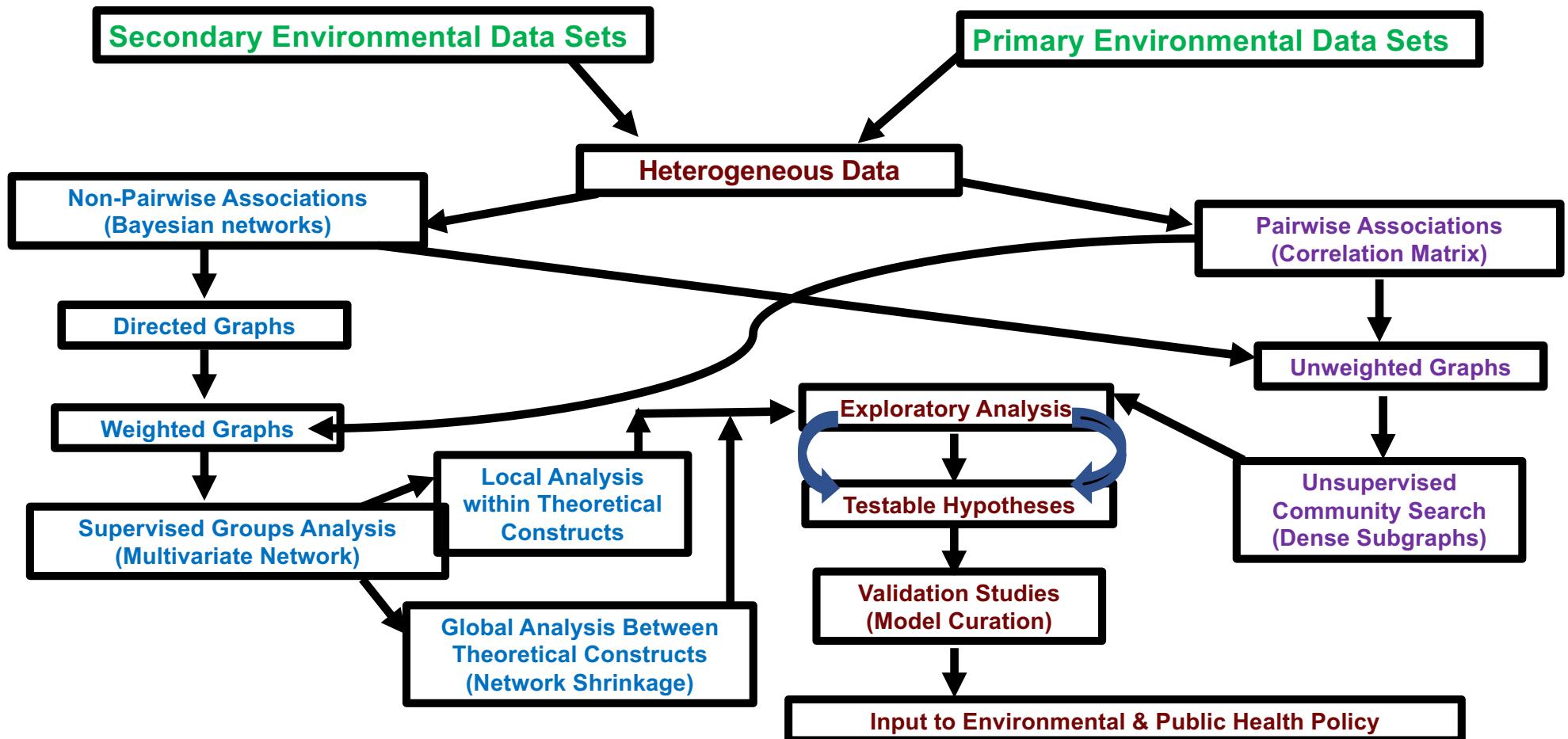
GLOBAL SIGNIFICANCE, LOCAL IMPACT


Public Health Exposome framework


Supervised and unsupervised clustering, parametric and non-parametric, combinatorial algorithms and paraclique analysis

GLOBAL SIGNIFICANCE, LOCAL IMPACT

BD2K analytics to interrogate significance of “Place” in high-risk census tracts



PHE Tool Chain

BD2K analytics to interrogate significance of “Place” in high-risk census tracts

COMPLEX NETWORKS
2017

The 6th International Conference on
Complex Networks and Their Applications

November 29 - December 01
Lyon, France

BOOK OF ABSTRACTS

**A network analysis of the incidence pattern of
microcephaly in the context of Zika Virus Infection**

Authors: Myriam Patricia Cifuentes^{1,2*}, Clara Mercedes Suarez¹, Ricardo Cifuentes⁴,
Nathan Doogan², Noel Malod-Dognin⁵, Sam Windels⁴, Jose Fernando Valderrama⁶,
Darryl B. Hood², Natasa Przulj⁵

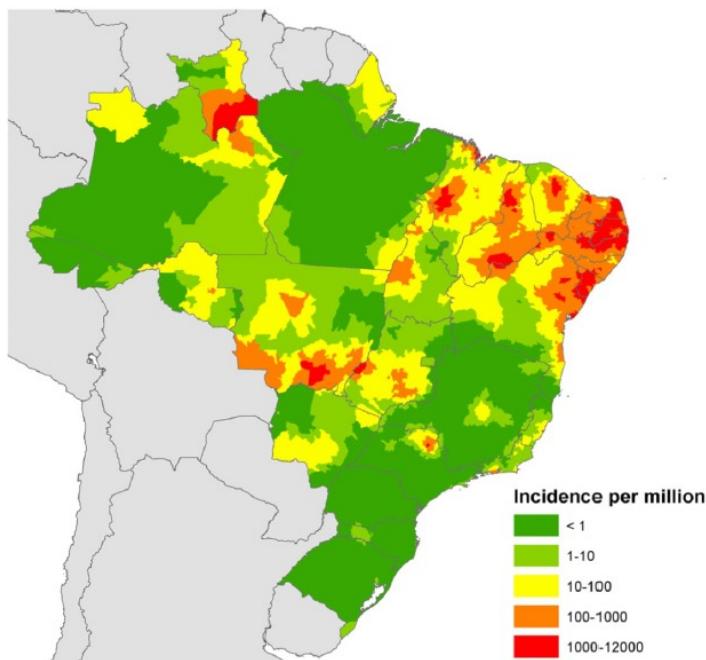
Affiliations:

¹Department of Mathematics, College of Sciences, Universidad Antonio Nariño, Colombia.

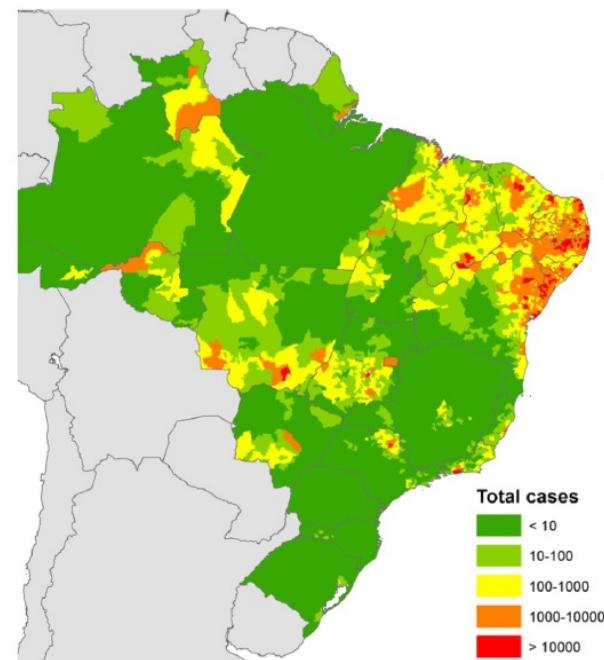
²Division of Environmental Health Sciences, College of Public Health, The Ohio State University, U.S.A.

³Maestría en Salud Pública, Universidad Santo Tomás.

⁴Universidad Militar Nueva Granada.


⁵Department of Computer Science, University College London, UK.

⁶Sub-directorate of Transmissible Diseases, Ministerio de Salud, República de Colombia.


GLOBAL SIGNIFICANCE, LOCAL IMPACT

C) Cumulative Zika incidence

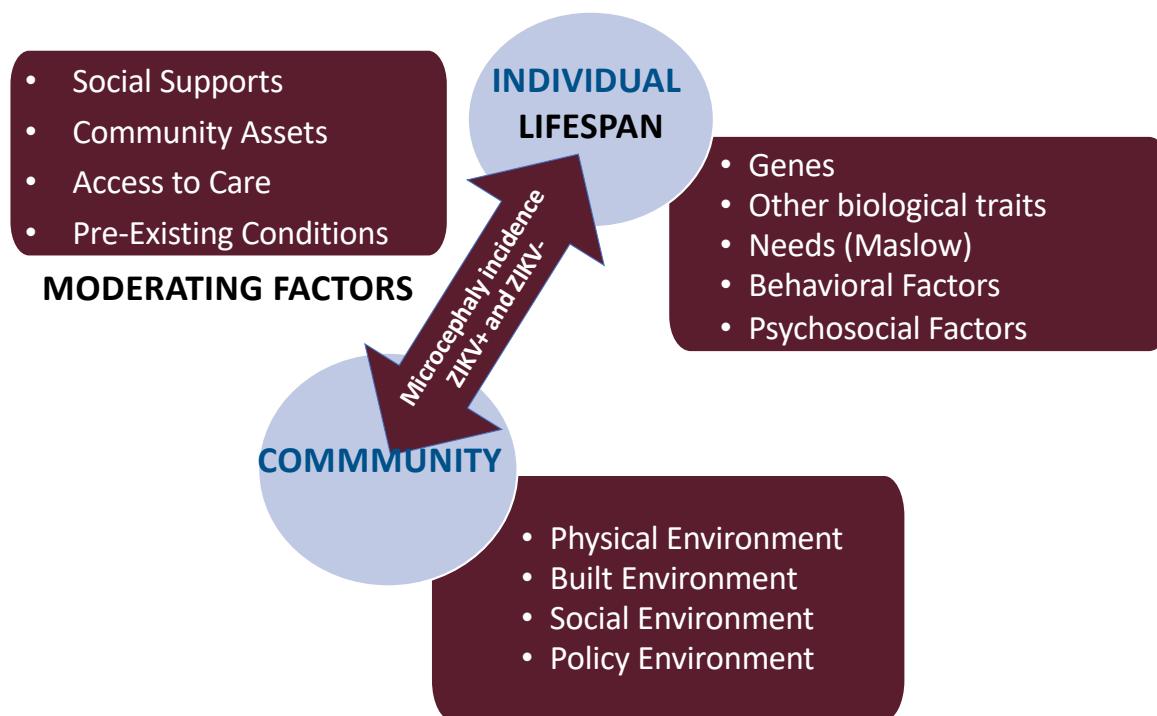

D) Cumulative Zika cases

Figure 1. Geographic distribution of ZIKV infection did not match with microcephaly outbreaks during the 2015-2016 ZIKV epidemic

From; Brady OJ, Osgood-Zimmerman A, Kassebaum NJ, Ray SE, de Arau'jo VEM, da No'brega AA, *et al.* (2019) The association between Zika virus infection and microcephaly in Brazil 2015–2017: An observational analysis of over 4million births. *PLoS Med* 16(3): e1002755. <https://doi.org/10.1371/journal.pmed.1002755>

...alternative hypotheses as to
other determinant factors that explain how the built,
natural, physical and social environment interact with...

Test the hypothesis that multiple factors are associated with microcephaly incidence positive for Zika infection (m-ZIKV⁺).

1,810 cases of m-ZIKV⁺ and during 2016
3,924 cases of m-ZIKV⁻ during 2016
5,734 microcephalic babies in one year
117,326 low birth weight (LBW) cases
863,153 births (B)

Characterize specific patterns of associations with multiple factors, and contrast that pattern with the patterns of associations with those factors that were exhibited in three types of Controls:

- 1) microcephaly incidence negative for Zika infection (m-ZIKV⁻),
- 2) Low Birth Weight (LBW, indicator of infant morbidity), and
- 3) Births (B, as a proxy for healthy newborns)

METHODOLOGY

Collected and curated public frequency data to calculate all controlled statistical associations among 382-variables describing **16-determinant factors**, incidence of concurrent health outcomes, and m-ZIKV⁺ surveillance from 5,565 municipalities in Brazil.

Comparative Network Inferential Analysis

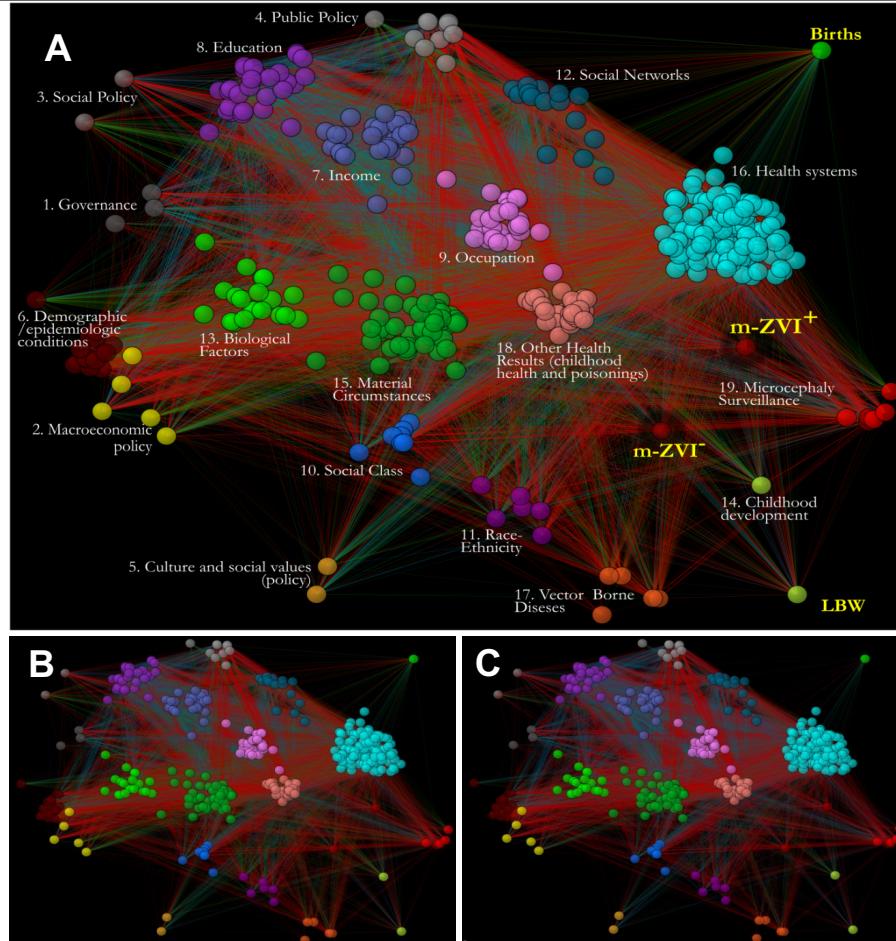
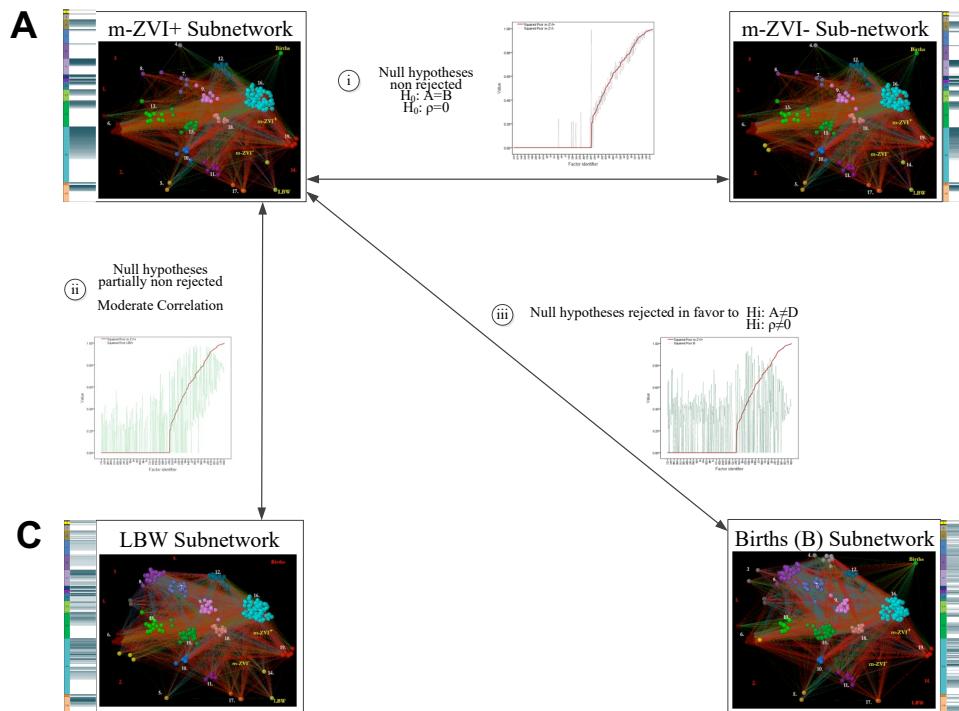

Scale	Determinant	Summary of variables in each determinant
Context determinants	1. Governance	Governance is depicted as the formalized convergence of diverse social factors of decision making, such as municipal planning agencies, mechanisms for empowering citizens and involvement in high-level policy agendas (12).
	2. Macroeconomic policy	Variables describe the balance through economic impositions and fostering and the resulting economic inequalities in population by Gini and Theil indices (2, 12-14).
	3. Social policy	Variables relating to social support in municipalities through proxies of ZEIS (Zonas Especiais de Interesse Social) for low income housing and inter-institutional social support and development (2, 12-14).
	4. Public policy	Variables describe diverse instruments such as plans and legislation that stabilize general public policies on environment, land use, urban settlement, development and housing, economy and transportation.
	5. Culture and social values	Variables relating to institutional concerns of cultural and educational affairs in municipalities (12).
	6. Demographic Epidemiologic conditions	Population age pyramid according to the 2010 census and 2015 population estimate for municipalities. Institutional concerns of health and sanitation in municipalities (12, 15).
Structural determinants	7. Income	Population percent and income distribution between rich, vulnerable, poor and poorest populations, and for workers and unemployed. We also included the mean income by race, and the GDP, per capita GDP and the human development index (HDI) and its income dimension in municipalities (14, 16).
	8. Education	Attainment and enrollment in basic school (primary and middle), literacy by race, sex and according to age thresholds, and the expected years of study. We included the dimension of 'education' of HDI (14).
	9. Occupation	Participation in the work force and unemployment, differentiated by race, educational attainment and work sector, and commuting (12, 14, 16).
	10. Social Class	Social class by individuals and households located in agglomerates qualified as subnormal, and variables labeling social vulnerability (13).
	11. Race-Ethnicity	Distribution by Brazil's racial groups (2, 12, 13).
Intermediary determinants	12. Social Networks/Socio-env. Psych. Circumstances	Civil status, people and children in households supported by people without education of who are vulnerable, and dependency ratio (12, 14, 16).
	13. Biological Factors	Population distributed by sex, and women population in fertile age groups, fertility rate, infant female and male populations, life expectancy, longevity and ageing rate. Longevity dimension of the Human Development Index (16).
	14. Childhood Development	Negative approach by Low Birth Weight (LBW) and less than 1 year undernourished children (12, 16).
	15. Material Circumstances	Dwelling material, availability and access to aqueduct/in-house pipe water, sewage system, and waste disposal. Access to electricity. Vegetation distribution and land use. Potential exposure to agro-toxic by agricultural use or residue disposal. Rapid assessment of indices for <i>Aedes aegypti</i> (<i>Levantamiento Rápido de Índices para Aedes aegypti LIRAA</i>) (13, 17). Low income Rate Assistance.
	16. Health System (0.974)	Variables of investment (national and local) and performance of Brazil Health System in municipalities, prenatal care and normal delivery, primary and higher levels of care coverage and public health actions. We included as one of the main public health actions a very detailed documentation of vaccinations, number of doses (as a proxy of the strength of this intervention) and coverage (width of intervention over beneficiary population) for 2015 and 2016 (15, 16).
Health outcomes	17. Vector Borne Diseases	Severe dengue, Malaria and Chagas disease cases (15, 16).
	18. Other Health Results	Infant and childhood mortality, and incidence rate of congenital syphilis. Different poisoning incidence according to municipality of exposure, notification and residence (18). Place of exposure indicative of contact with toxic substances, while place of residence and notification correspond to the administrative process.
	19. Microcephaly Surveillance	Surveillance of microcephaly incidence, including incoming and investigated microcephaly cases, and confirmed/discard ZVI cases during the first trimester of 2016 (19).
	20. Stillbirths Surveillance	Surveillance of stillbirth incidence, including incoming and investigated stillbirth cases, and confirmed/discard ZVI cases (19).

Table 1. Determinants of health and health outcomes related to microcephaly attributed to ZVI included in the model. For each determinant are included **Cronbach alpha** values. [0.70 and above is **good**, 0.80 and above is **better**, and 0.90 and above is **best**].

Methodology (Continued)

- To control associations from spuriousness and confounding, **squared higher order partial correlations (pcor²) were used** as proxies for effect size, **complemented by zero-order correlations (zcor)** and **partial correlations (pcor)**, each with the corresponding significant p-values evaluated after correction for multiple comparisons.
- **Macroanalyses** compared subnetwork structures by statistical tests between distributions of their network indices and by advanced network structural methods of graphlet distance.
- **Microanalyses** assessed the details explaining the differences by **comparing the fingerprints of all aligned subnetworks**.
- **Subnetwork fingerprints corresponded to visualizations of ordered weighted associations** between matching pairs of variables in each subnetwork.


Exposome Wide Association Study-based determination of ZVD context networks

Context networks derived from *Exposome* framework and BD2K analytics demonstrating associations of multiple determinant factors with Zika Virus Disease incidence in Brazil's municipalities during the 2015-2016 outbreak. Groups of variables within each determinant factor are shown.

Four colors show **strongest positive partial correlations (dark blue)**, **strong (green)**, **negative strongest (dark red)**, and **strong (light red)** partial correlations among variables/nodes. A, shows the full network, including labels. B, corresponds to the threshold network by graphlet optimally far from random network. C, corresponds to threshold network clustering coefficient-based optimally far from random network. (Cifuentes et al., 2021)

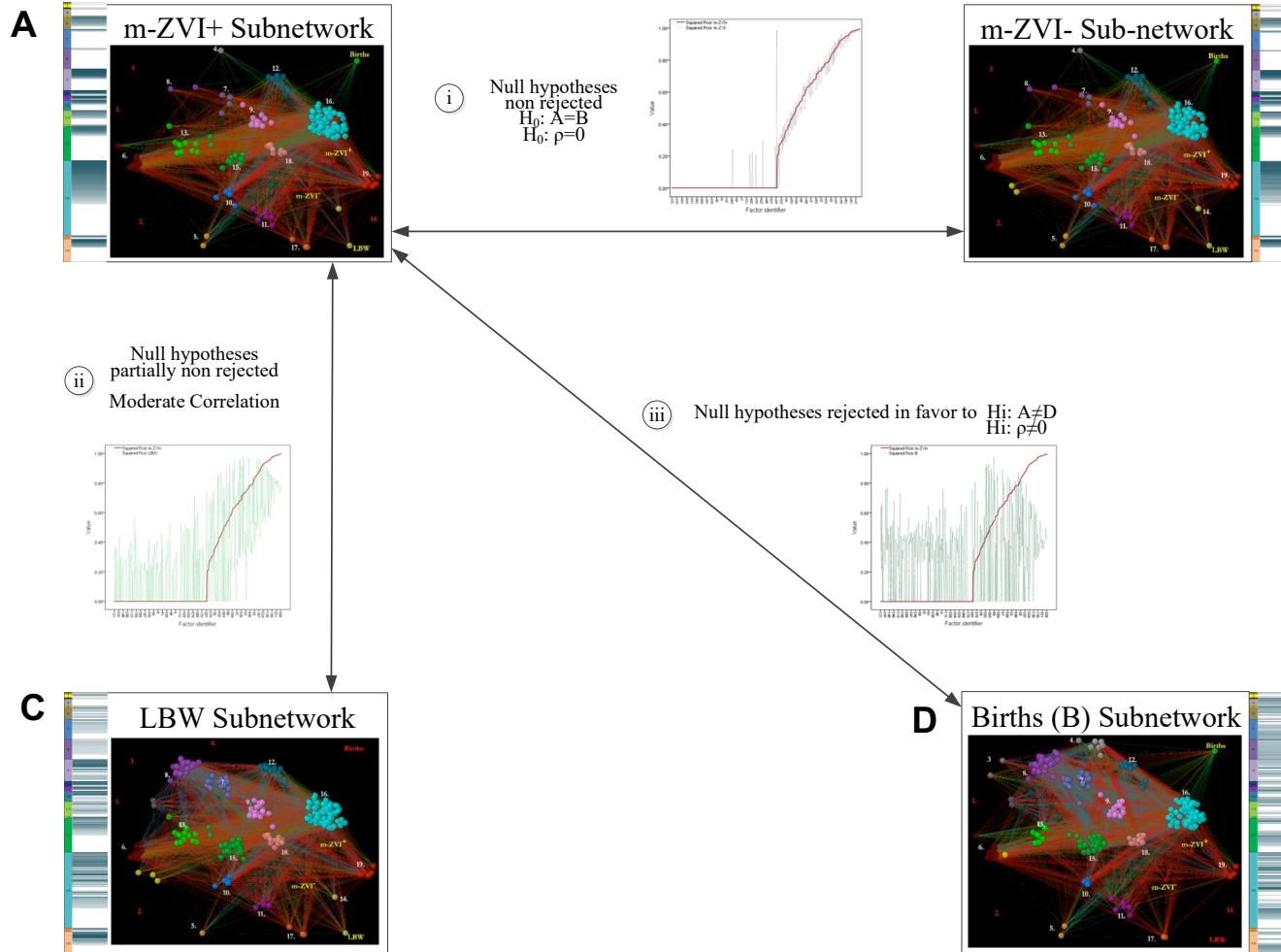
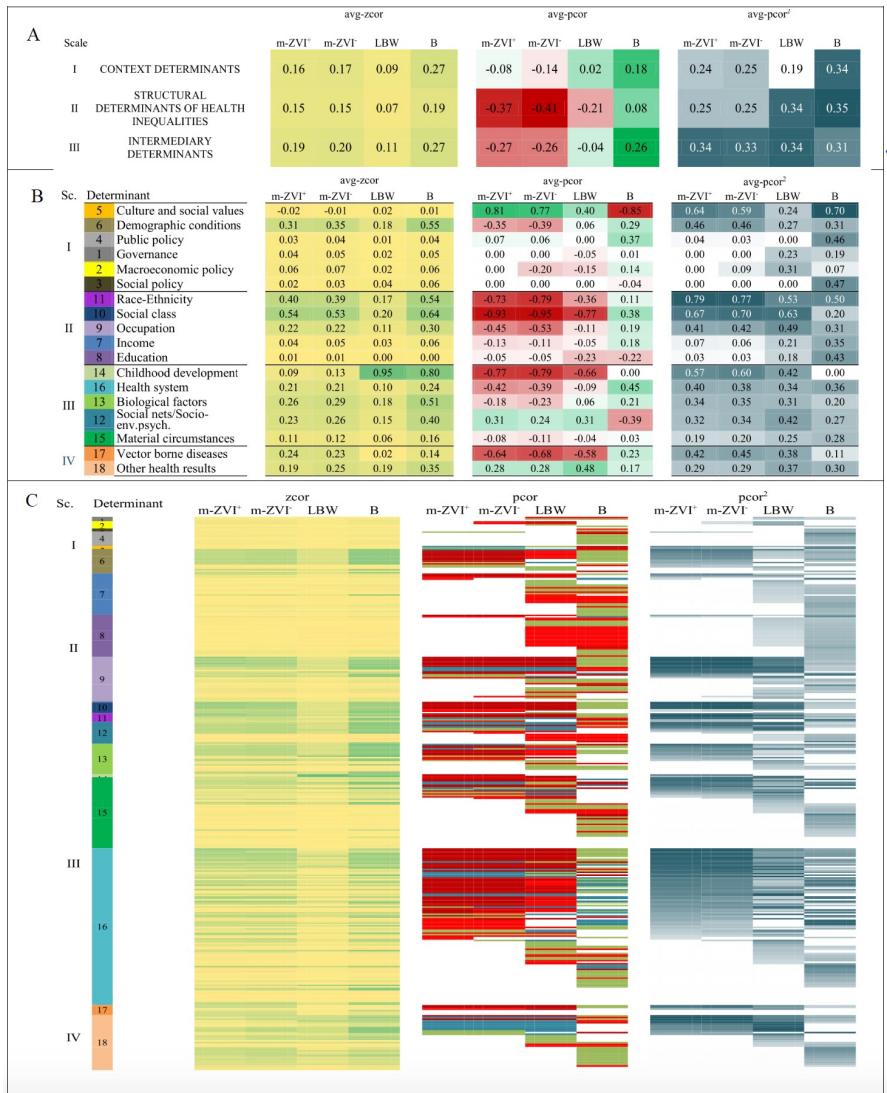

Evaluated the patterns of factors associated with case and control phenomena by extracting the corresponding subnetworks. The case subnetwork included all interdependent nodes directly linked to m-ZIKV⁺ incidence (**Figure 2. Panel A**). Control subnetworks included all nodes directly linked with m-ZIKV⁻ incidence (**Figure 2. Panel B**), LBW (**Figure 2. Panel C**), and Births (B) (**Figure 2. Panel D**).

Figure 2. General pattern of factors associated with microcephaly is unspecific for m-ZIKV⁺

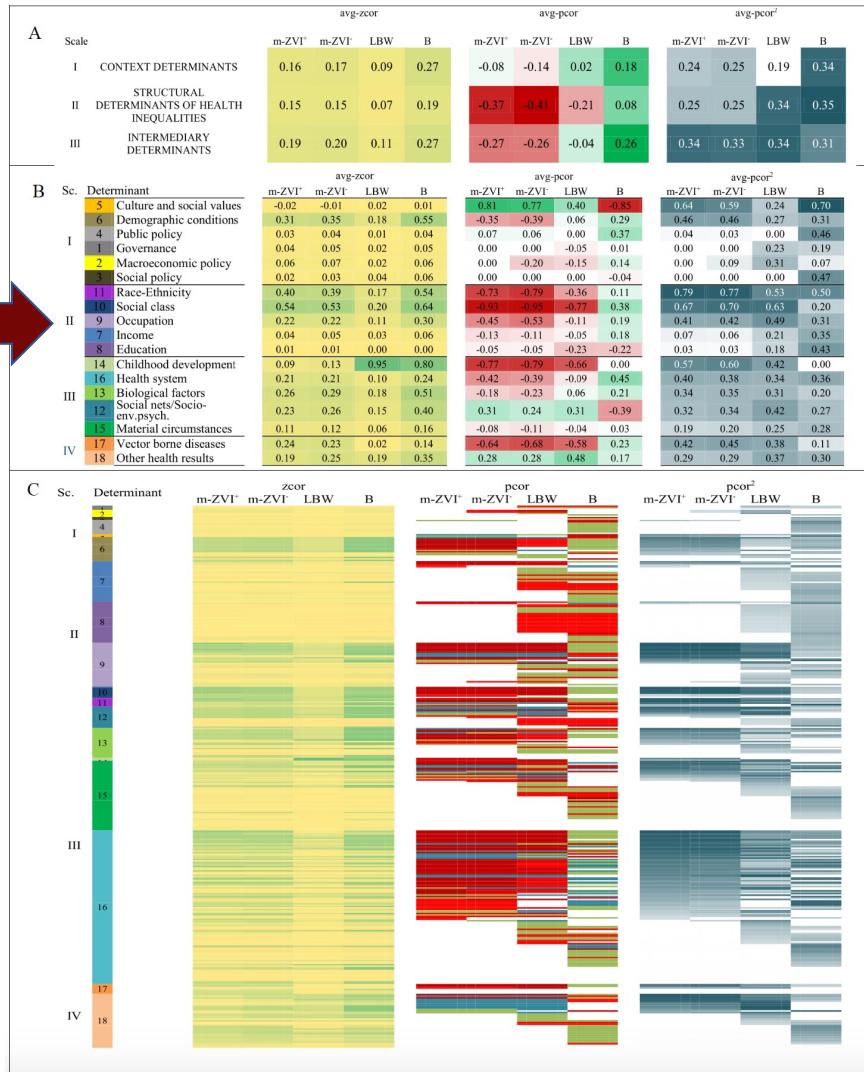

Extracted Subnetworks (A-D) from the 0.65 threshold context network (Fig. 1) by the method of k=1-neighbors.

D

Figure 2. General pattern of factors associated with microcephaly is unspecific for m-ZIKV⁺

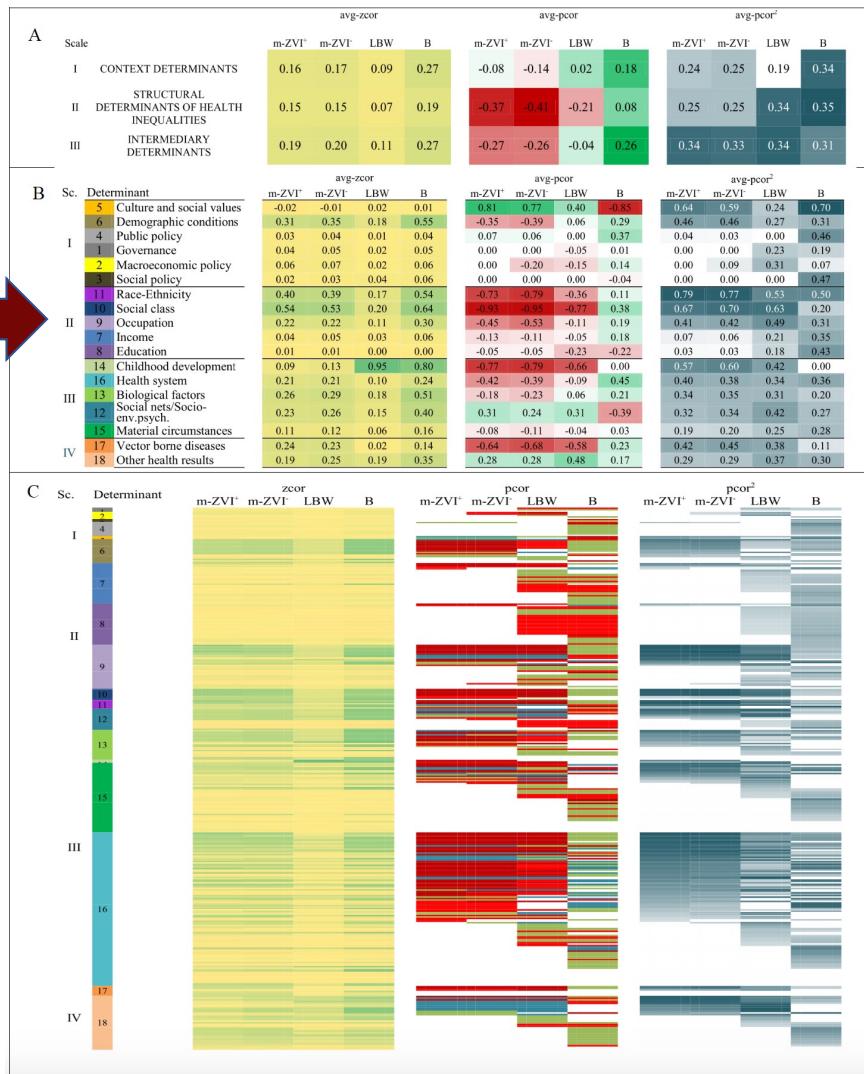
- Oscillation amplitude of control subnetworks $pcor^2$ show the smallest differences between m-ZIKV⁺ and m-ZIKV⁻
- Moderate differences between m-ZIKV⁺ and LBW (indicator of infant morbidity)
- Robust differences between m-ZIKV⁺ and B (as a proxy for healthy newborns)
- Flat red line indicates no connections.

Figure 3. Factors that explained the non-specific pattern of associations of microcephaly incidence positive for Zika infection (m-ZIKV⁺)


- In general agreement with the recent work reported by Brady et al., 2019, comparisons by this method suggested that the patterns of factors associated with case m-ZIKV⁺ and control m-ZIKV⁻ subnetworks were analogous.
- Among the three, intermediary factors had a slightly higher influence.
- By contrast, for the LBW-subnetwork, factors in the social structure and intermediary scales were significant.
- For the B-subnetwork, factors in all three scales had low-to-moderate effects.

Legend: Heat bands summarizing patterns of association of each subnetwork. Values of zcor, pcor, pcor² are visualized by color gradients that are analogous to single columns of heat maps. The descending ordered pcor² within determinants of ZIKV⁺ is the reference pattern (first column, teal shade).

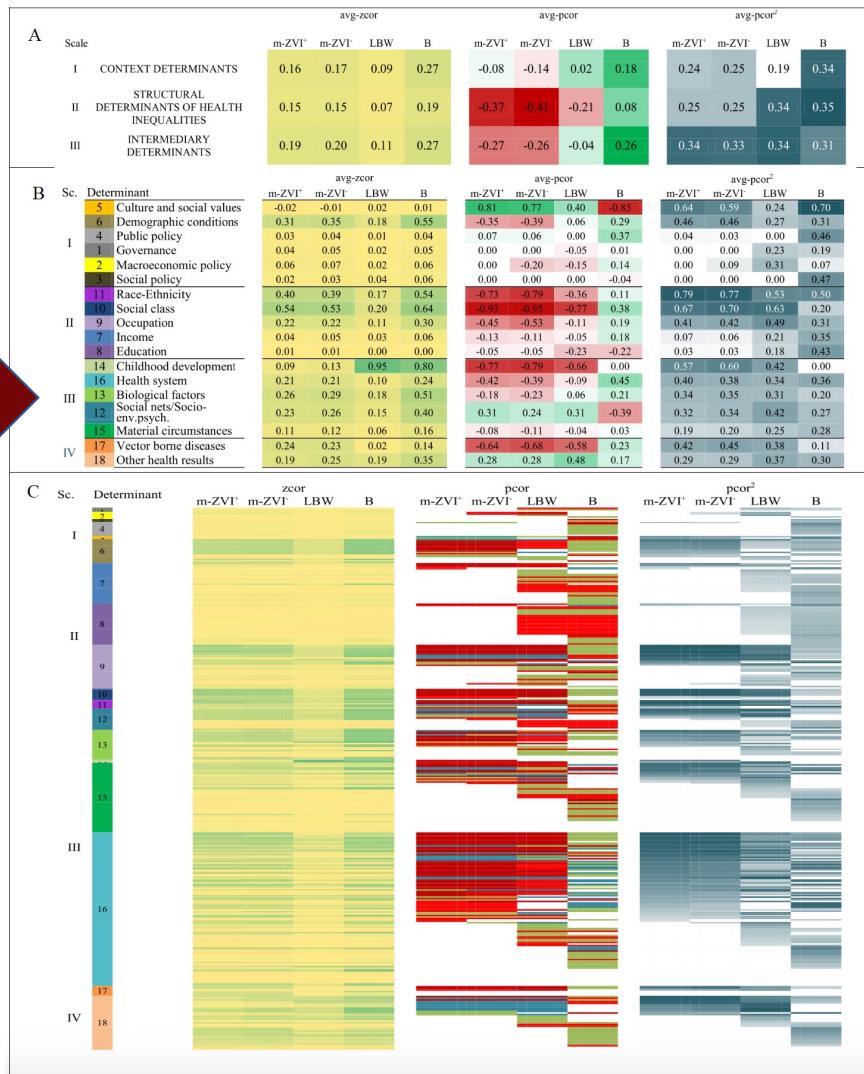
Panel A, bands by the three broad scales of determinants.


Panel B, Bands by Determinant factors.

Panel C, Bands by single variables within factors.

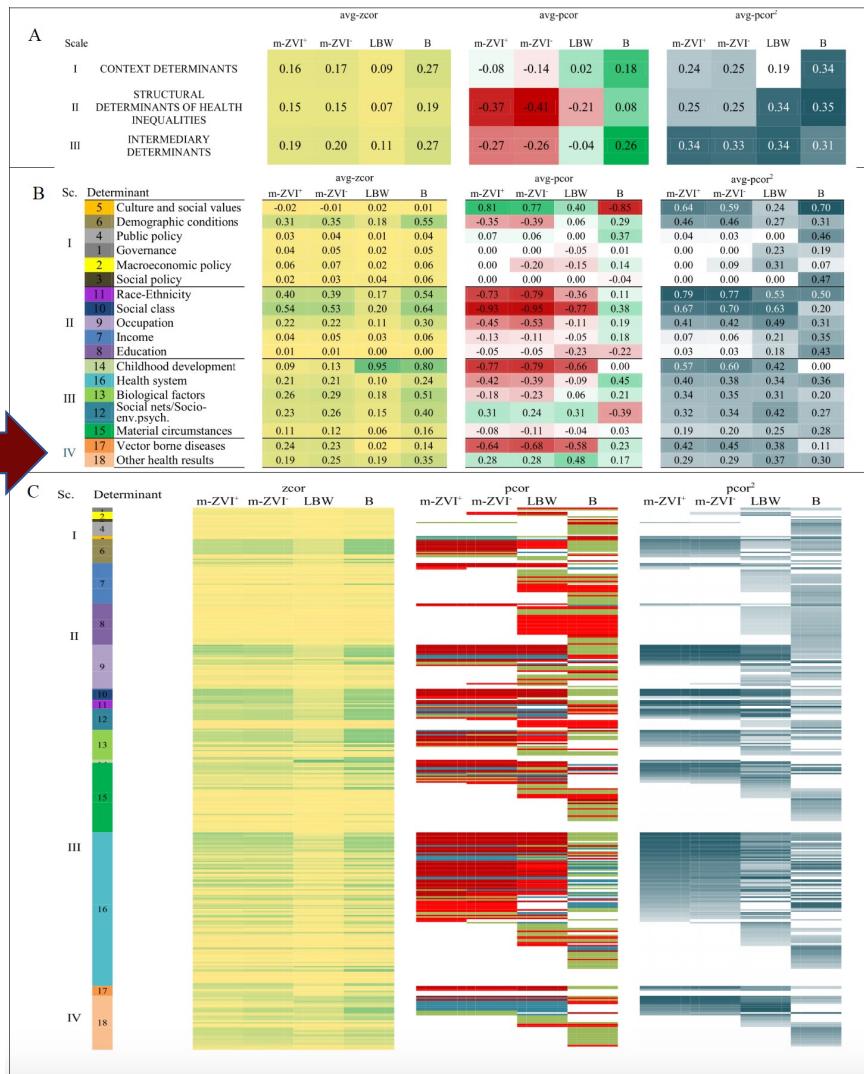
Figure 4. Factors in the scale of structural determinants.

- In the **microcephaly incidence positive for Zika infection (m-ZIKV⁺)** subnetwork, links with race/ethnicity and social class had the highest avg-pcor².
- The factor of social class mainly included variables describing vulnerability.
- Occupation' factor showed a moderate avg-pcor² by nodes of 'labor force,' "unemployment proportion" (general and by race), and 'unemployment in the environmental field' as the only specific occupational sector involved.
- Conversely, 'income' and 'education' factors had very low avg-pcor². Inside the income factor, 'mean income' and 'Theil index for work revenues' had high pcor², while 'income of 20% richest' and 'per-capita GDP' had moderate pcor²
- Inside the education factor, only 'enrollment of 5-6-year-old' and 'illiteracy' were associated respectively, by moderate and low pcor². Minor differences of the m-ZIKV-subnetwork were due to links with 'unemployment in the construction sector' inside the occupation factor, and linked absence with 'per-capita GDP' in the income factor (**Fig. 4B**).


Figure 5. Factors in the scale of structural determinants.

In the control LBW-subnetwork, the determinants of race, social vulnerability, and occupation in the structural scale stood out based on avg-pcor².

Within the race determinant White, mixed, and Black had the highest pcor²; all social vulnerability variables were linked except ‘woman head of family’. These association patterns inside each of the determinants were similar to those in the **microcephaly incidence positive for Zika infection (m-ZIKV⁺) subnetwork**.


In the control B-subnetwork, the determinant of race also had the highest avg-pcor², but, in contrast to the associations in the m-ZIKV⁺-subnetwork, education, income, and occupation were relevant. Per capita GDP, illiteracy (determined without reference to race), primary school enrollment, participation in the labor force by members of yellow and indigenous races, and self-employment were remarkable nodes with high pcor².

While the LBW-subnetwork and the B-subnetwork have significant associations with a number of the same structural determinants, the most obvious observation is the fact that those associations have opposite signs for each subnetwork, respectively.

Figure 6. Factors of the intermediary scale.

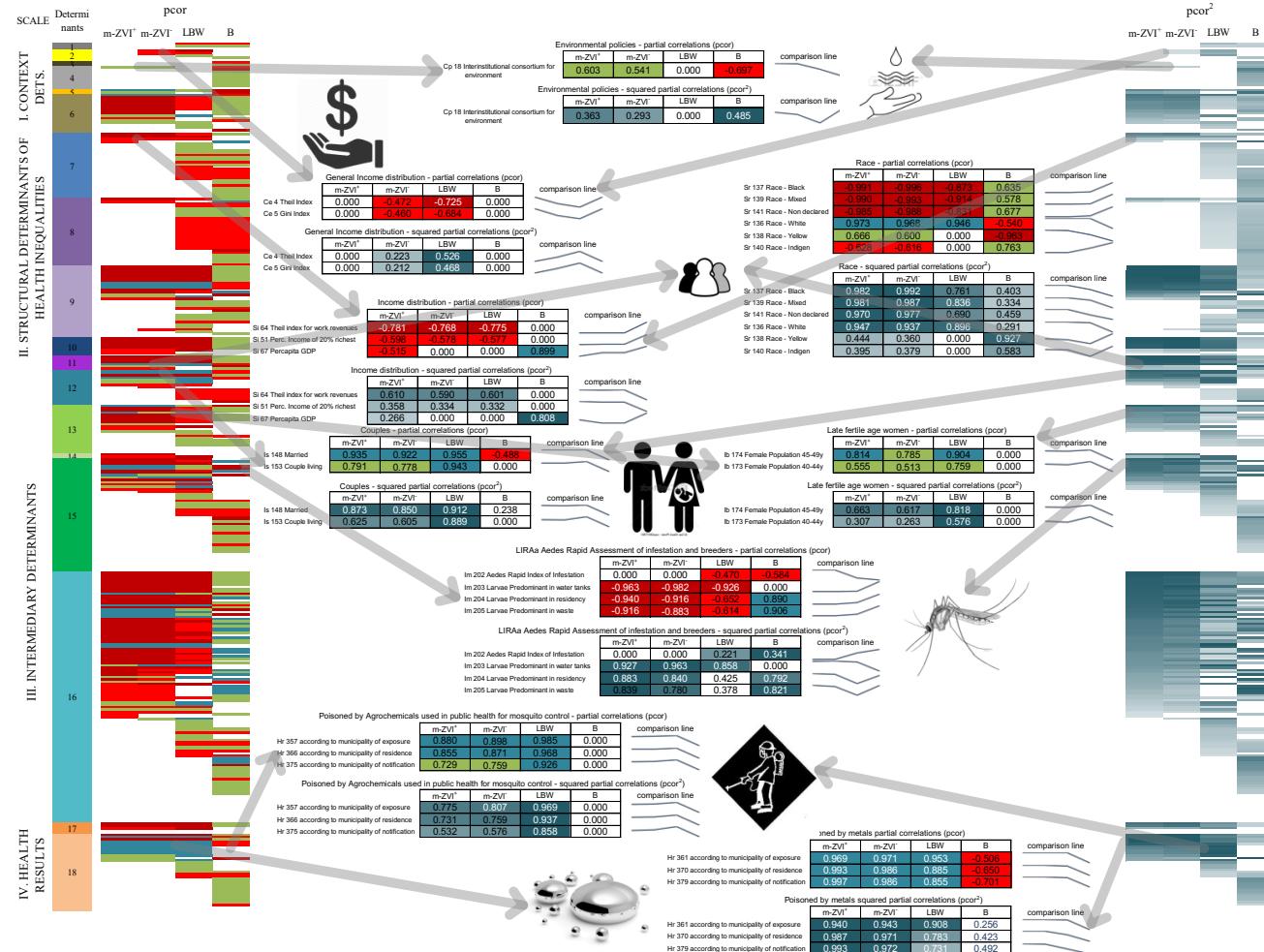

- These factors convey underlying social stratification of structural factors, by determining differences in exposure and vulnerability to health-compromising conditions and includes material, psychosocial, behavioral, and biological factors. Among the three scales, the intermediary scale contributed the most to the **microcephaly incidence positive for Zika infection (m-ZIKV⁺)** subnetwork (Fig. 4B), and all its factors were associated with that subnetwork.
- 'Childhood development' had the highest avg-pcor² of the factors, mainly due to the value of this factor in the LBW-subnetwork. Similarly, the avg-pcor² of the intermediary scale in the LBW-subnetwork was the highest due to the contributions of all determinants with main roles in the 'undernourishment' node and factors of 'social relationships' and the 'health system.' In the B-subnetwork conversely but as expected, association with problems of 'childhood development' was absent.
- The factor of social relationships includes variables about marital status. Most marital status variables had associations in the m-ZIKV⁺-subnetwork
- These data support the view that different types of family relationships (protective/stable, unstable and/or weak) offer a similar substrate to cases of microcephaly and LBW, but not to cases of normal birth.

Figure 7. Factors in the scale of the role of health systems in health outcomes.

- Involves access to care and health interventions. This factor had similar avg-pcor² in case and control subnetworks, however the opposite sign of avg-pcor in the B-subnetwork that comports with health care having a different role for healthy and ill populations.
- Immunizations are recognized preventive health measures and the focal point w/r re-emergence of infectious diseases that will threaten populations. The (immunity) interventions are not straightforward and encompass diverse results from positive (cross-immunity) to negative (sporadic secondary undesired effects).
- In the control LBW-subnetwork, a wider variety of customary vaccinations during 2015 and 2016 were associated with a with lower pcor².
- Broader pattern of vaccinations was present in B-subnetwork with almost all pcor with opposite signs. This grounded the interpretation of other subnetworks and for discerning the potential protective role of vaccinations.
- For other health care interventions, the connection between 'prenatal care' and **microcephaly incidence positive for Zika infection** (m-ZIKV⁺) was the strongest and pcor² successively decreased in the m-ZIKV⁺-subnetwork to the LBW-subnetwork to the B-subnetwork.

Figure 8. Summary of the Analysis

Environmental Policies common to both types of microcephaly

Differences in Macroeconomic Indicators between both types of microcephaly

Unequal distribution of municipal income between positive and negative m-ZIKV.

Inverse proportional relationship of m-ZIKV+/- in higher income populations.

Differential involvement of white couples and late fertile age women populations showed potential biological vulnerabilities.

There is an associated relationship of ZIKV-related microcephaly with mosquito breeding but not with mosquito populations.

Because these associations are even higher with LBW, this observation should dampen the enthusiasm for the effectiveness of this intervention.

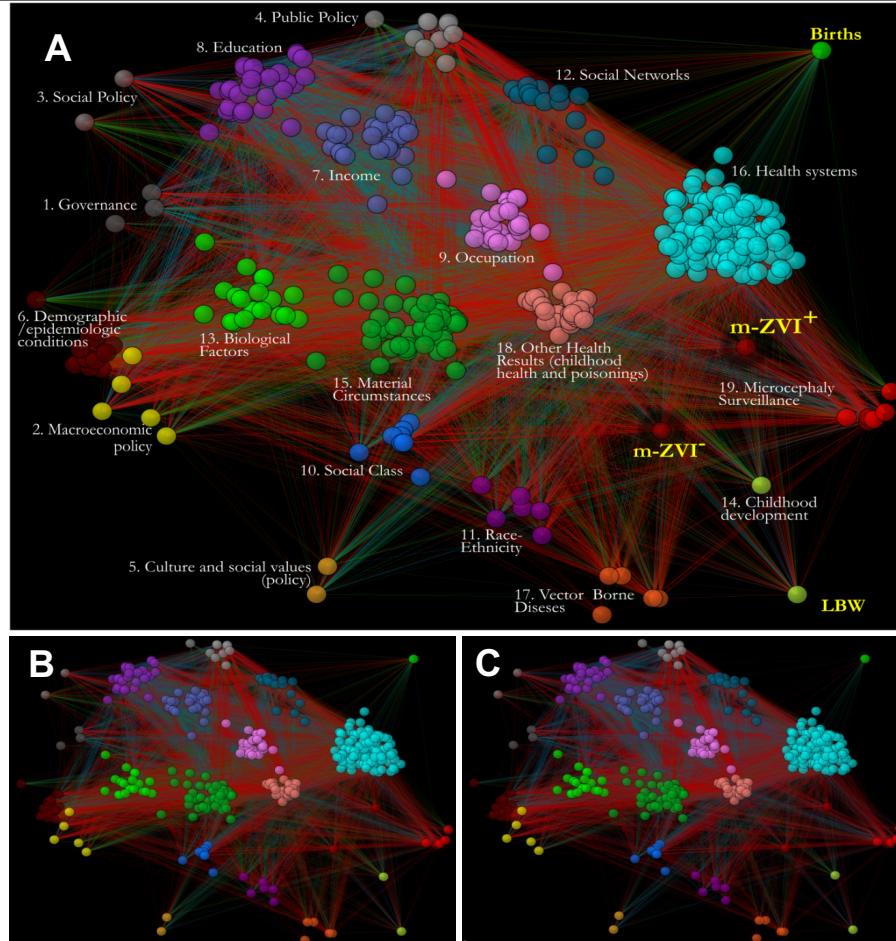
The collective relationships presented for both types of microcephaly is an emergent factor to explain non-ZIKV-related microcephaly.

OVERALL SUMMARY

Comparative network inferential analysis of patterns of factors associated with Zika virus infections in Brazil during 2015-2016 coinciding with a microcephaly epidemic identified multiple contributing determinants that advances our understanding of the effects of exposures to chemical and non-chemical stressors in the built, natural, physical, and social environment.

The results revealed latent factors, their central roles and convergence to suggest that effects related to ZIKV-microcephaly incidence in Brazil were not specific to Zika infection and were common to both types of microcephaly.

Diagnostic failure to discern Zika infection during the epidemic likely explains this result. This suggests underestimation of the size of Brazil's ZIKV⁺ microcephaly incidence. Alternatively, assuming that diagnostic uncertainty similarly affected both groups makes evident that microcephaly is a complex event where multiple causes and mediators converge.


Zika diagnostic tests deserve a general inclusion in antenatal screenings, even more, if multiple modes of transmission increase uncertainty about infection risk. Above all, improving diagnostic tests is critical.

Public health interventions include the spread of agrochemicals to control mosquito populations. An extensive presence of mosquitoes implies widespread exposure to these agrochemicals. Therefore, in addition to the links intuitively found between Zika infection, its vector, and m-ZIKV⁺, a link between the co-occurrence of this nonselective exposure and microcephaly is suggested. These data are in support of molecular data on exposures to the insecticide pyriproxyfen with dampening of neurodevelopmental processes particularly in areas with ZIKV prevalence.

THE OHIO STATE UNIVERSITY

COLLEGE OF PUBLIC HEALTH

Exposome Wide Association Study-based determination of ZVD context networks

Context networks derived from *Exposome* framework and BD2K analytics demonstrating associations of multiple determinant factors with Zika Virus Disease incidence in Brazil's municipalities during the 2015-2016 outbreak. Groups of variables within each determinant factor are shown.

Four colors show **strongest positive partial correlations (dark blue)**, **strong (green)**, **negative strongest (dark red)**, and **strong (light red)** partial correlations among variables/nodes. A, shows the full network, including labels. B, corresponds to the threshold network by graphlet optimally far from random network. C, corresponds to threshold network clustering coefficient-based optimally far from random network. (Cifuentes et al., 2021)

GLOBAL SIGNIFICANCE, LOCAL IMPACT

Twitter reacts to the Bears selection of Justin Fields!

Thank you!

Darryl B Hood
@DhoodB

@DhoodB
OSU Buckeye Hood Family: We are elated because we can go see Justin Fields and the Chicago Bears when we are there on weekends during football season.

@DhoodB
We will be visiting our daughter Alexis who is a PGY1 resident at U of Chicago and coupling that to football makes for great weekends in the Windy City!

THE OHIO STATE UNIVERSITY

COLLEGE OF PUBLIC HEALTH

Ohio State University & Meharry

Paul Juarez
Patricia Cifuentes
M. McCallister
Tongwen Zhang
George Jules
Raina Rhoades
Aramandla Ramesh
Habibeh Khoshbouei
Jing Bin Wang

UT Knoxville- Mike Langston

FAMU

F. Close and S. Stokes

EPA-STAR
S11ES014156-05
RD83927501
R56ES17448-01A1
U54NS041071-10
NCRR-RRO3032-35
T32MH065782

Vanderbilt

Ford Ebner
Steven Lloyd
Miki Aschner
FP Guengerich
USC
Pat Levitt
Dan Campbell
Auburn
M Chris Newland

TAMU

Steve Safe
Nancy Lurie Marks Foundation
&
Simons Foundation Autism
Research Initiative

GLOBAL SIGNIFICANCE, LOCAL IMPACT

LITERATURE CITED

WHO, WHO Zika virus outbreak global response. *WHO* (2016), (available at <http://www.who.int/emergencies/zika-virus/response/en/>).

D. Musso, D. J. Gubier, *Zika Virus. Clin. Microbiol. Rev.* **29**, 487–524 (2016).

A. R. Plourde, E. M. Bloch, A Literature Review of Zika Virus. *Emerg. Infect. Dis.* **22**, 1–15 (2016).

W. K. de Oliveira, J. Cortez-escalante, W. Tenório, G. Holanda, G. Madeleine, Increase in reported prevalence of microcephaly in infants born to women living in areas with confirmed Zika virus transmission during the first trimester of pregnancy — Brazil, 2015. *Morb. Mortal. Wkly. Rep.* **65**, 242–247 (2016).

WHO, Zika virus and complications. *WHO webpage* (2016), (available at <http://www.who.int/emergencies/zika-virus/en/>).

WHO, WHO Director-General summarizes the outcome of the Emergency Committee regarding clusters of microcephaly and Guillain-Barré syndrome. *WHO* (2016), (available at <http://www.who.int/mediacentre/news/statements/2016/emergency-committee-zika-microcephaly/en/>).

WHO, The History of Zika Virus. *WHO* (2016), (available at <http://www.who.int/emergencies/zika-virus/history/en/>).

WHO, “Situation Report: Zika Virusn Microcephaly, Guillain-Barré Syndrome. 30 June 2016” (2016), (available at <http://www.who.int/emergencies/zika-virus/situation-report/30-june-2016/en/>).

COES, “Informe Epidemiológico N° 32 - SE 25/2016. Monitoramento dos casos de microcefalia no Brasil” (2016), (available at http://combateaedes.saude.gov.br/images/pdf/informe_microcefalia_epidemiologico_32.pdf).

Chen CK, Bruce M, Tyler L, et al. Analysis of an Environmental Exposure Health Questionnaire in a Metropolitan Minority Population Utilizing Logistic Regression and Support Vector Machines. *Journal of Health Care for the Poor and Underserved*. 2013;24:154-172.

Juarez P. Sequencing the public health genome. *J Health Care Poor Underserved*. 2013;24(1 Suppl):114-120.

Langston MA, Levine RS, Kilbourne BJ, et al. Scalable Combinatorial Tools for Health Disparities Research. *Int. J. Environ. Res. Public Health.* 2014;11(10):10410-10413.

Juarez PD, Matthews-Juarez P, Hood DI, W., et al. The Public Health Exposome: A Population-based, Exposure Science Approach to Health Disparities Research. *Int. J. Environ. Res. Public Health.* 2014;11(12):12866-12895.

Oyana TJ, Matthews-Juarez P, Cormier SA, Xu X, Juarez PD. Using an External Exposome Framework to Examine Pregnancy-Related Morbidities and Mortalities: Implications for Health Disparities Research. *International Journal of Environmental Research and Public Health.* 2016;13(1):13.

Clark, RS, Pellom, ST, Booker, B, Ramesh, A, Zhang, T, Shanker, A, Maguire, M, Juarez, P, Matthews-Juarez, P, Langston, M., Lichtveld, M. and Hood, DB. Validation of research trajectory 1 of an Exposome framework: Exposure to benzo(a)pyrene confers enhanced susceptibility to bacterial infection. *Environ Res.* Vol. 146, Apr 2016: p173-184.

Chinonso N. Ogojiaku, Allen, JC, Anson-Dwamena, R., Barnett, K. S., Adetona, O. Im, W. **Hood, D. B.** The health opportunity index: understanding the input to disparate health outcomes in vulnerable and high-risk census tracts. *Int. J. Environ. Res. Public Health* 2020, 17(16), 5767; <https://doi.org/10.3390/ijerph17165767>

Cifuentes P, Reichard J, Im W, Smith S, Colen C, Giurgescu C, Williams KP, Gillespie S, Juarez PD, **Hood DB.** [Application of the Public Health Exposome Framework to Estimate Phenotypes of Resilience in a Model Ohio African-American Women's Cohort.](#) *J Urban Health.* 2019. Mar;96 (Suppl. 1):57-71. doi: 10.1007/s11524-018-00338-w. PMID:30758792.

Gillespie SL, Anderson CA, Zhao S, Tan Y, Kline D, Brock G, Odei J, O'Brien E, Sims M, Hood; DB, Williams KP, Joseph JJ. The Role of Allostatic Load in the Association of Depressive Symptoms with Incident Coronary Heart Disease: The Jackson Heart Study. *Psychoneuroendocrinology.* 2019 Nov;109:104369. doi: 10.1016/j.psyneuen.2019.06.020. Epub 2019 Jul 4 PMID: 31307010.

Giurgescu C, Nowak AL, Gillespie S, Nolan TS, Anderson CM, Ford JL, **Hood DB**, Williams KP. [Neighborhood Environment and DNA Methylation: Implications for Cardiovascular Disease Risk.](#) 2019. *J Urban Health.* Mar;96 (Suppl 1):23-34. doi: 10.1007/s11524-018-00341-1. PMID:30635842.

Felix AS, Lehman A, Nolan TS, Sealy-Jefferson S, Breathett K, **Hood DB**, Addison D, Anderson CM, Cené CW, Warren BJ, Jackson RD, Williams KP. [Stress, Resilience, and Cardiovascular Disease Risk Among Black Women.](#) 2019. *Circ Cardiovasc Qual Outcomes.* Apr;12(4): e005284. doi: 10.1161/CIRCOUTCOMES.118.005284. PMID:30909729.

Juarez PD, **Hood DB**, Song ME, Ramesh A. Use of an exposome approach to understand the effects of exposures from the natural, built, and social environments on cardio-vascular disease onset, progression, and outcomes. *Frontiers in Public Health* (2020) doi: 10.3389/fpubh.2020.00379.

Paul D. Juarez, Mohammad Tabatabai, R. Burciaga Valdez, **Darryl B. Hood**, Wansoo Im, Charles Mouton, Cynthia Colen, Mohammad Z. Al-Hamdan, Patricia Mathews-Juarez, Maureen Y. Lichtveld, Daniel Sarpong, Aramandla Ramesh, Michael A. Langston, Gary L. Rogers, Charles A. Phillips, John F. Reichard, Macarius M. Donneyong and William Blot. The Effects of Social, Personal, and Behavioral Risk Factors and PM2.5 on Cardio-Metabolic Disparities in a Cohort of Community Health Center Patients. *Int J Environ Res Public Health*. 2020 May 19;17(10): 3561.doi: 10.3390/ijerph17103561. PMID: 3243869

D. Evans, F. Nijhout, R. Parens, A. J. Morales, Y. Bar-Yam, A Possible Link Between Pyriproxyfen and Microcephaly. *bioRxiv*, 48538 (2016).

S. Dzieciolowska, A. Larroque, E. Kranjec, P. Drapeau, E. Samarut, The larvicide pyriproxyfen blamed during the Zika virus outbreak does not cause microcephaly in zebrafish embryos. *Nat. Publ. Gr.* **7**, 1–11 (2017).

L. Truong, G. Gonnerman, M. T. Simonich, R. L. Tanguay, Assessment of the developmental and neurotoxicity of the mosquito control larvicide , pyriproxyfen , using embryonic zebrafish. *Environ. Pollut.* **218**, 1089–1093 (2016).

R. Parens, Y. B. Yam, “Zika and Other Potential Causes of Microcephaly in Brazil :” (Cambridge, MA, U.S., 2016). Y. Bar-Yam, F. Costa, R. Parens, A. J. Morales, F. Nijhout, Determining the rate and week of infection of Zika caused microcephaly from Colombian and Brazilian data; Status Report August 1, 2016, 1–7 (2016).

D. Butler, Brazil asks whether Zika acts alone to cause birth defects. *Nature*. **535** (2016), pp. 475–476. LGH, The right(s) approach to Zika. *Lancet Glob. Heal.* **4**, e427 (2016).

K. Stettler *et al.*, Specificity , cross-reactivity and function of antibodies elicited by Zika virus infection. *Science (80-)*. **8505**, 1–10 (2016).

WHO, WHO - Dispelling rumours around Zika and complications. *WHO* (2016), (available at <http://www.who.int/emergencies/zika-virus/articles/rumours/en/>).

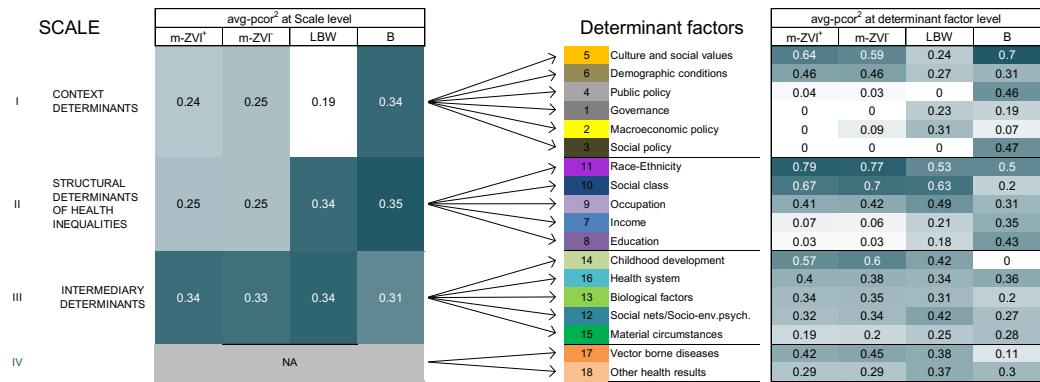
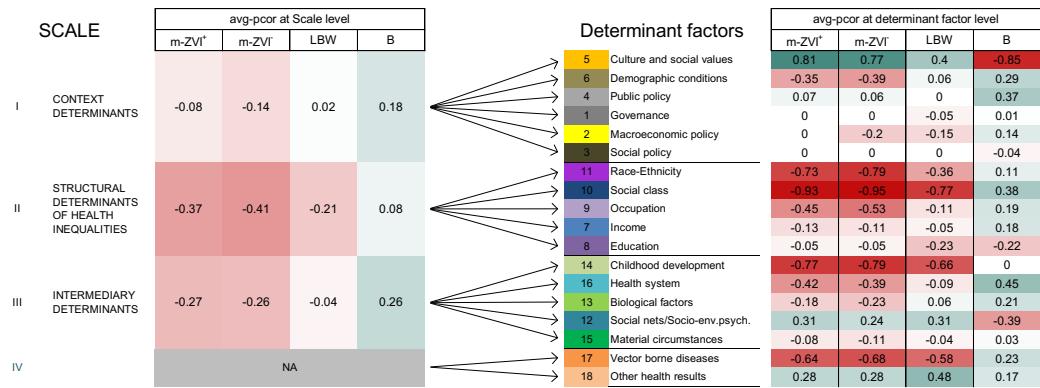
Ministério da Saúde, Ministério da Saúde divulga novos dados de microcefalia. *Portal da Saude SUS Bras.* (2016).

S. R. Harris, Measuring head circumference. Update on infant microcephaly. *Can. Fam. Physician.* **61**, 680–684 (2015).

C. H. Simmins Jr, Establishing base levels of microcephaly in Brazil prior to the arrival of Zika viral illnesses. *Bull. World Heal. Organ. Open*, 1–8 (2016).

G. W. Miller, *The Exposome: A Primer* (Elsevier, Waltham, MA., U.S., 2013; <http://books.google.com.au/books?id=USKcAAAAQBAJ>).

S. M. Rappaport, M. T. Smith, Environment and Disease Risks. *Science* (80-). **330**, 460–461 (2010).



O. Solar, A. Irwin, *A conceptual framework for action on the social determinants of Health. Social Determinants of health discussion Paper 2* (World Health Organization, Geneva, 2010).

WHO, “ZIKA VIRUS AGENDA” (WHO/ZIKV/PHR/16.1, Geneva, Switzerland., 2016).

S. A. Rasmussen, D. J. Jamieson, M. A. Honein, L. R. Petersen, Zika Virus and Birth Defects — Reviewing the Evidence for Causality. *N. Engl. J. Med.*, 1–7 (2016).

D. A. Schwartz, The Origins and Emergence of Zika Virus, the Newest TORCH Infection: What’s Old Is New Again. *Arch. Pathol. Lab. Med.* **141**, 18–25 (2017).

A. Chua, I. Prat, C. M. Nuebling, D. Wood, F. Moussy, Update on Zika Diagnostic Tests and WHO ' s Related Activities. *PLoS Negl. Trop. Dis.*, 4–11 (2017).

